Schwingung einer gespannten Saite mit fixierten Endpunkten 
(Waves on a stretched string with fixed ends) 
| > | restart:with(plots): | 
Warning, the name changecoords has been redefined
Solution of wave equation:
| > | l := 1; c:=1; | 
![(Typesetting:-mprintslash)([l := 1], [1])](pde_wave/pde_wave_1.gif) 
 
![(Typesetting:-mprintslash)([c := 1], [1])](pde_wave/pde_wave_2.gif) 
 
Spatial solution
| > | X[n](x):= sin(n*Pi/l*x);X[m](x):=subs(n=m,X[n](x)): | 
 := sin(n*Pi*x)], [sin(n*Pi*x)])](pde_wave/pde_wave_3.gif) 
 
Time-dependent solution
| > | T[n](t):= (A(n)*cos(n*Pi*c/l*t)+B(n)*sin(n*Pi*c/l*t));u[n](x,t):=T[n](t)*X[n](x): | 
 := A(n)*cos(n*Pi*t)+B(n)*sin(n*Pi*t)], [A(n)*cos(n*Pi*t)+B(n)*sin(n*Pi*t)])](pde_wave/pde_wave_4.gif) 
 
Eigenfunction expansion
| > | u(x,t):=Sum(u[n](x,t),n=1..infinity); | 
![(Typesetting:-mprintslash)([u(x, t) := Sum((A(n)*cos(n*Pi*t)+B(n)*sin(n*Pi*t))*sin(n*Pi*x), n = 1 .. infinity)], [Sum((A(n)*cos(n*Pi*t)+B(n)*sin(n*Pi*t))*sin(n*Pi*x), n = 1 .. infinity)])](pde_wave/pde_wave_5.gif) 
 
Initial conditions
| > | u0(x):=x*(1-x); | 
![(Typesetting:-mprintslash)([u0(x) := x*(1-x)], [x*(1-x)])](pde_wave/pde_wave_6.gif) 
 
| > | v(x):=x*(1-x); | 
![(Typesetting:-mprintslash)([v(x) := x*(1-x)], [x*(1-x)])](pde_wave/pde_wave_7.gif) 
 
Plot of u0:
| > | plot(u0(x) , x=0..l ,thickness=5); | 
 
 
Evaluation of coefficients for specific ICs
| > | A(n):=(2/l)*Int(u0(x)*X[n](x) ,x=0..l);A(n):=expand(value(%)): | 
![(Typesetting:-mprintslash)([A(n) := 2*Int(x*(1-x)*sin(n*Pi*x), x = 0 .. 1)], [2*Int(x*(1-x)*sin(n*Pi*x), x = 0 .. 1)])](pde_wave/pde_wave_9.gif) 
 
| > | A(n):=simplify(subs({sin(n*Pi)=0,cos(n*Pi)=(-1)^n},A(n))); | 
![(Typesetting:-mprintslash)([A(n) := 4*(1+(-1)^(1+n))/(n^3*Pi^3)], [4*(1+(-1)^(1+n))/(n^3*Pi^3)])](pde_wave/pde_wave_10.gif) 
 
| > | B(n):=(2/(n*Pi*c))*Int( v(x)*X[n](x),x=0...l);B(n):=expand(value(%)): | 
![(Typesetting:-mprintslash)([B(n) := 2*Int(x*(1-x)*sin(n*Pi*x), x = 0 .. 1)/(n*Pi)], [2*Int(x*(1-x)*sin(n*Pi*x), x = 0 .. 1)/(n*Pi)])](pde_wave/pde_wave_11.gif) 
 
| > | B(n):=radsimp(subs({sin(n*Pi)=0,cos(n*Pi)=(-1)^n},%)); | 
![(Typesetting:-mprintslash)([B(n) := -4*(-1+(-1)^n)/(n^4*Pi^4)], [-4*(-1+(-1)^n)/(n^4*Pi^4)])](pde_wave/pde_wave_12.gif) 
 
(Observe convergence of series.)
| > | u[n](x,t):=eval(T[n](t)*X[n](x)): | 
Series solution
| > | u(x,t):=Sum(u[n](x,t),n=1..infinity); | 
![(Typesetting:-mprintslash)([u(x, t) := Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3)-4*(-1+(-1)^n)*sin(n*Pi*t)/(n^4*Pi^4))*sin(n*Pi*x), n = 1 .. infinity)], [Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3...](pde_wave/pde_wave_13.gif)
![(Typesetting:-mprintslash)([u(x, t) := Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3)-4*(-1+(-1)^n)*sin(n*Pi*t)/(n^4*Pi^4))*sin(n*Pi*x), n = 1 .. infinity)], [Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3...](pde_wave/pde_wave_14.gif) 
 
First few terms of sum
| > | u(x,t):=sum(u[n](x,t),n=1..5); | 

 
 
Animation
| > | animate(u(x,t),x=0...l,t=0..20,color=red,thickness=5 , frames=600 ); |